Home / NCERT MCQs / 9th Class / Math / Areas of Parallelogram and Triangles

# 9th Class - Math | Chapter: Areas of Parallelogram and Triangles MCQs

Dear candidates you will find MCQ questions of 9th Class - Math | Chapter: Areas of Parallelogram and Triangles here. Learn these questions and prepare yourself for coming examinations. You can check the right answer of any question by clicking the option or by clicking view answer button.
All subjects and chapters of 9th Class are listed below. You can select any subject and chapter below to learn mcq questions of that chapter and subject.

(A) 10cm
(B) 6cm
(C) 12cm
(D) 15cm

(A) 1/2 ar(ABCD)
(B) ¼ ar(ABCD)
(C) 2 ar(ABCD)
(D) ar(ABCD)

## Q3) If P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD, then

(A) ar(APB) > ar(BQC)
(B) ar(APB) < ar(BQC)
(C) ar(APB) = ar(BQC)
(D) None of the above

## Q4) If ABCD and EFGH are two parallelograms between same parallel lines and on the same base, then

(A) ar (ABCD) > ar (EFGH)
(B) ar (ABCD) < ar (EFGH)
(C) ar (ABCD) = ar (EFGH)
(D) None of the above

(A) 1 : 2
(B) 1 : 1
(C) 2 : 1
(D) 3 : 1

## Q6) ABCD is a quadrilateral whose diagonal AC divides it in two parts of equal area, then ABCD is a

(A) rectangle
(B) rhombus
(C) parallelogram
(D) need not be any of (a), (b) or (c)

(A) 1 : 3
(B) 1 : 2
(C) 3 : 1
(D) 1 : 4

## Q8) The median of a triangle divides it into two

(A) isosceles triangle
(B) congruent triangles
(C) right angled triangle
(D) triangles of equal areas

(A) 96 cm²
(B) 36 cm²
(C) 48 cm²
(D) 24 cm²

(A) 24 cm²
(B) 18 cm²
(C) 30 cm²
(D) 36 cm²

(A) 3 cm
(B) 6 cm
(C) 8 cm
(D) 4 cm

(A) 1 : 2
(B) 1 : 4
(C) 1 : 1
(D) 2 : 1

(A) 24 cm²
(B) 12 cm²
(C) 18 cm²
(D) 36 cm²

(A) 5 cm²
(B) 6 cm²
(C) 3 cm²
(D) 9 cm²

## Q15) A median of a triangle divides it into two

(A) Congruent triangles
(B) Isosceles triangles
(C) Right triangles
(D) Equal area triangles

## Q16) In a triangle ABC, E is the mid-point of median AD. Then

(A) ar(BED) = 1/4 ar(ABC)
(B) ar(BED) = ar(ABC)
(C) ar(BED) = 1/2 ar(ABC)
(D) ar(BED) = 2 ar(ABC)

## Q17) If D and E are points on sides AB and AC respectively of ΔABC such that ar(DBC) = ar(EBC). Then

(A) DE is equal to BC
(B) DE is parallel to BC
(C) DE is not equal to BC
(D) DE is perpendicular to BC

## Q18) If Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at O. Then

(A) ar (AOD) = ar (BOC)
(B) ar (AOD) > ar (BOC)
(C) ar (AOD) < ar (BOC)
(D) None of the above

## Q19) If Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar(△AOD) = ar(△BOC). Then ABCD is a

(A) Parallelogram
(B) Rectangle
(C) Square
(D) Trapezium

(A) 1:2
(B) 3:2
(C) 1:4
(D) 1:3