Home / NCERT MCQs / 9th Class / Math / Surface Areas and Volumes

# 9th Class - Math | Chapter: Surface Areas and Volumes MCQs

Dear candidates you will find MCQ questions of 9th Class - Math | Chapter: Surface Areas and Volumes here. Learn these questions and prepare yourself for coming examinations. You can check the right answer of any question by clicking the option or by clicking view answer button.
All subjects and chapters of 9th Class are listed below. You can select any subject and chapter below to learn mcq questions of that chapter and subject.

(A) lb+bh+hl
(B) 2(lb+bh+hl)
(C) 2(lbh)
(D) lbh/2

(A) 62 sq.cm
(B) 30 sq.cm
(C) 54 sq.cm
(D) 90 sq.cm

(A) 11200 sq.cm
(B) 13000 sq.cm
(C) 13400 sq.cm
(D) 12000 sq.cm

(A) 4/3 πr3
(B) 4πr3
(C) 2πr3
(D) ⅔ π r3

(A) 440 sq.cm
(B) 352 sq.cm
(C) 400 sq.cm
(D) 412 sq.cm

(A) 2 cm
(B) 3 cm
(C) 4 cm
(D) 6 cm

(A) 2 cm
(B) 3 cm
(C) 1 cm
(D) 1.5 cm

(A) 150 sq.cm
(B) 165 sq.cm
(C) 177 sq.cm
(D) 180 sq.cm

## Q9) If slant height of the cone is 21cm and diameter of base is 24 cm. The total surface area of cone is

(A) 1200.77 sq.cm
(B) 1177 sq.cm
(C) 1222.77 sq.cm
(D) 1244.57 sq.cm

(A) 1386 sq.cm
(B) 1400 sq.cm
(C) 2464 sq.cm
(D) 2000 sq.cm

(A) 6000 cm³
(B) 1600 cm³
(C) 1000 cm³
(D) 600 cm³

## Q12) A cuboid having surface areas of 3 adjacent faces as a, b and c has the volume

(A) 3$$\sqrt{abc}$$
(B) $$\sqrt{abc}$$
(C) abc
(D) (abc)²

(A) 1 : 2
(B) 3 : 1
(C) 4 : 1
(D) 1 : 8

## Q14) Length of diagonals of a cube of side a cm is

(A) √2a cm
(B) √3a cm
(C) $$\sqrt{3a}$$ cm
(D) 1 cm

## Q15) Volume of spherical shell is

(A) $$\frac{2}{3}$$ πr³
(B) $$\frac{3}{4}$$ πr³
(C) $$\frac{4}{3}$$ π(R³ – r³)
(D) None of these

(A) π(R² – r²)h
(B) πR²h
(C) πr²h
(D) πr²(h1 – h1)

## Q17) The radius of a sphere is 2r, then its volume will be

(A) $$\frac{4}{3}$$ πr³
(B) 4πr³
(C) $$\frac{8}{3}$$ πr³
(D) $$\frac{32}{3}$$ πr³

(A) halved
(B) doubled
(C) same
(D) four time

## Q19) The total surface area of a cone whose radius is $$\frac{r}{2}$$ and slant height 2l is

(A) 2πr(l + r)
(B) πr(l + $$\frac{r}{4}$$)
(C) πr(l + r)
(D) 2πrl

(A) 1 : 4
(B) 1 : 3
(C) 2 : 3
(D) 2 : 1

(A) 15 m
(B) 16 m
(C) 10 m
(D) 12 m

(A) 512 m³
(B) 64 m³
(C) 216 m³
(D) 256 m³

(A) 10 : 17
(B) 20 : 27
(C) 17 : 27
(D) 20 : 37

(A) 4.2 cm
(B) 2.1 cm
(C) 2.4 cm
(D) 1.6 cm

(A) 8 cm³
(B) 512 cm³
(C) 64 cm³
(D) 27 cm³