Home / NCERT MCQs / 9th Class / Math / Statistics

# 9th Class - Math | Chapter: Statistics MCQs

Dear candidates you will find MCQ questions of 9th Class - Math | Chapter: Statistics here. Learn these questions and prepare yourself for coming examinations. You can check the right answer of any question by clicking the option or by clicking view answer button.
All subjects and chapters of 9th Class are listed below. You can select any subject and chapter below to learn mcq questions of that chapter and subject.

(A) 90
(B) 105
(C) 115
(D) 110

(A) 10
(B) 75
(C) 85
(D) 26

(A) 6
(B) 7
(C) 10
(D) 13

(A) 15
(B) 30
(C) 35
(D) 40

(A) 2m + l
(B) 2m – l
(C) m – l
(D) m – 2l

(A) 12.5 – 17.5
(B) 17.5 – 22.5
(C) 18.5 – 21.5
(D) 19.5 – 20.5

## Q7) In the class intervals 10-20, 20-30, the number 20 is included in

(A) 10-20
(B) 20-30
(C) both the intervals
(D) none of these intervals

(A) 0
(B) 1
(C) 3
(D) 5

## Q9) The ratio of sum of observations and total number of observations is called

(A) Mean
(B) Median
(C) Mode
(D) Central tendency

(A) (x+7)/4
(B) (2x+7)/4
(C) (3x+7)/4
(D) (4x+7)/4

(A) 6
(B) 8
(C) 9
(D) 11

(A) 149
(B) 150
(C) 147
(D) 144

(A) 10
(B) 24
(C) 12
(D) 8

(A) 7
(B) 9
(C) 10
(D) 6

## Q15) The value which appears very frequently in a data is called:

(A) Mean
(B) Median
(C) Mode
(D) Central tendency

(A) Mean
(B) Median
(C) Mode
(D) Data

(A) 2
(B) 2.2
(C) 2.4
(D) 2.8

## Q18) Which of the following is not a measure of central tendency?

(A) Standard deviation
(B) Mean
(C) Median
(D) Mode

(A) 9
(B) 10
(C) 11
(D) 12

(A) 6
(B) 5
(C) 3
(D) 2

(A) 28
(B) 30
(C) 35
(D) 38

(A) -1
(B) 0
(C) 1
(D) n-1

## Q23) If each observation of the data is increased by 5, then their mean

(A) remains the same
(B) becomes 5 times the original mean
(C) is decreased by 5
(D) is increased by 5

## Q24) Let $$\bar { x }$$ be the mean of x1, x2, …, xn and y the mean of y1, y2, …, yn. If z is the mean of x1, x2, …. xn, y1, y2, …, yn, then z is equal to

(A) $$\bar {x}+\bar{y}$$
(B) $$\frac{\bar {x}+\bar{y}}{2}$$
(C) $$\frac{\bar {x}+\bar{y}}{n}$$
(D) $$\frac{\bar {x}+\bar{y}}{2n}$$

(A) 45
(B) 49.5
(C) 54
(D) 56

## Q26) For drawing a frequency polygon of a continous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abcissae are respectively

(A) upper limits of the classes
(B) lower limits of the classes
(C) class marks of the classes
(D) upper limits of preceding classes

(A) 14
(B) 15
(C) 16
(D) 17

(A) 23
(B) 26
(C) 28
(D) 30